

L1 RCT Studies

Pamela Chumney
University of Wisconsin

PRSJM Meeting 10 October 2000

Simulation

- Old vs new TDR plots
- Other trigger rates and efficiencies
- Summary

Latest Simulation Results

CMSIM 116 Production

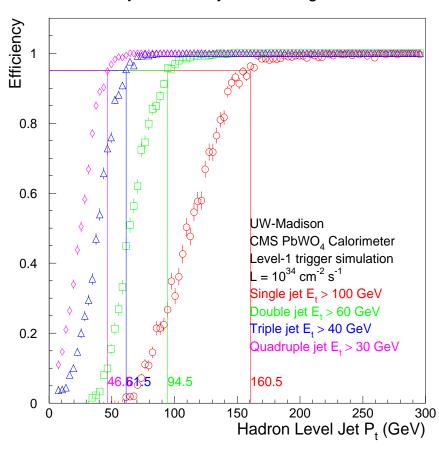
- Previously CMSIM 114
- Pileup at 10³⁴ and 10³³ cm⁻² s⁻¹ used

ORCA 4_2_0

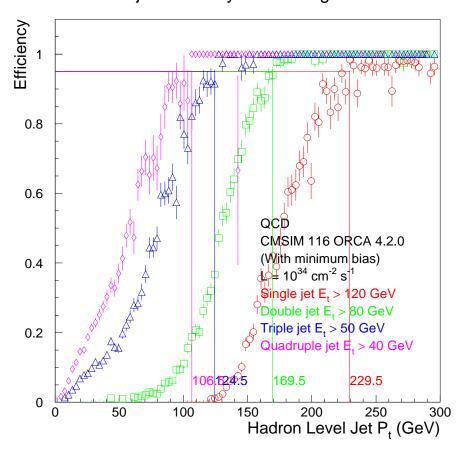
Previously Private Code

Updated Trigger TDR plots and tables

Full update expected in November


Only $|\eta| < 3$ used

- HF rates very high
- Waiting for validation of HF (ORCA?)

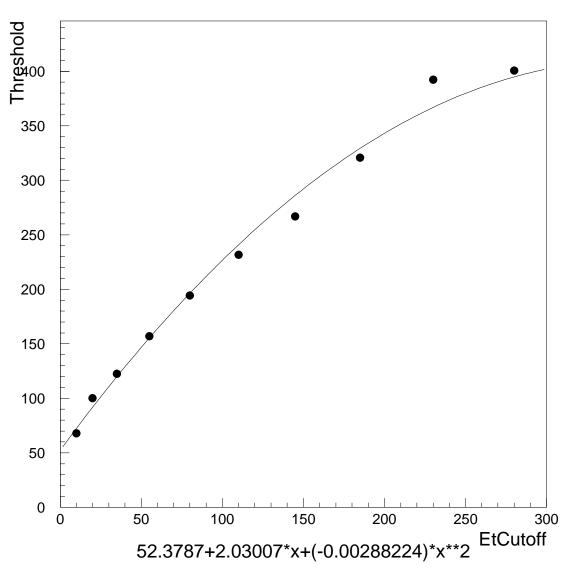

Jet Efficiencies

QCD jet efficiency - 12x12 algorithm

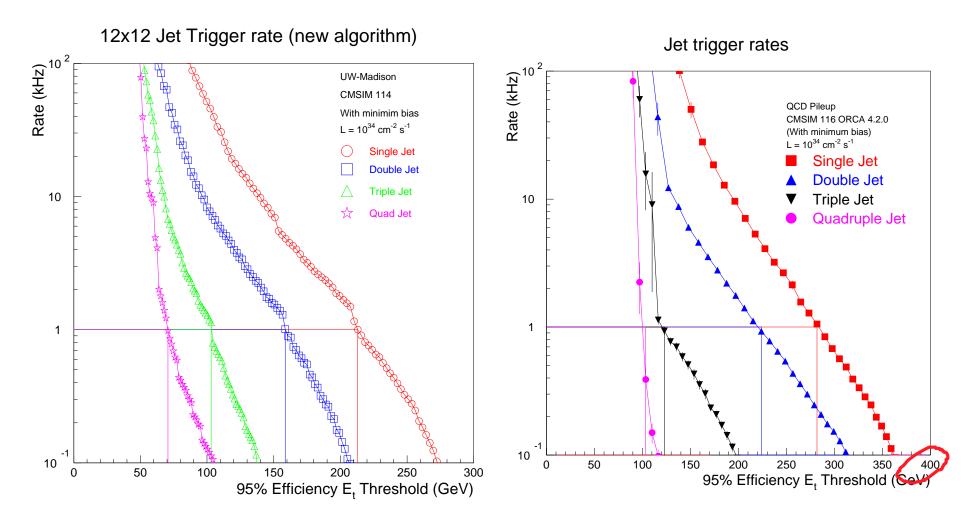
10³⁴ cm⁻² s⁻¹ with Pileup Cutoffs of 100, 60, 30, and 20 GeV

QCD jet efficiency - 12x12 algorithm

10³⁴ cm⁻² s⁻¹ with Pileup Cutoffs of 120, 80, 50, and 40 GeV


Higher cutoffs necessary to control rate
Turn on of efficiency also seems worse - 160%→195% of cutoff value for single jets

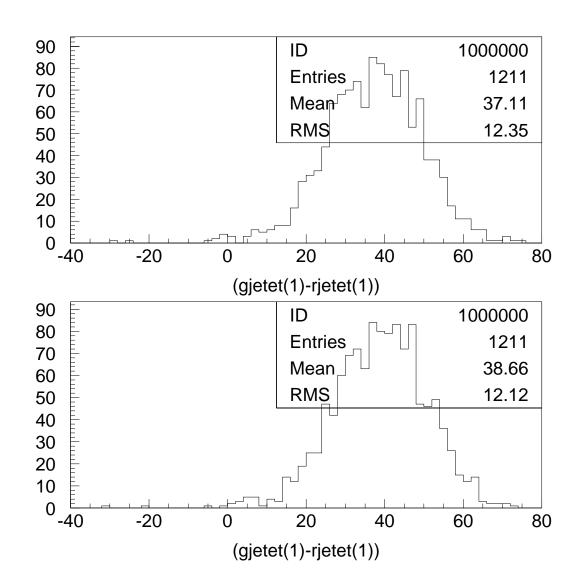
Individual Jet Calibration


Fit to second order polynomial instead of straight line

12x12 jet calibration

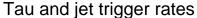
Jet Rates

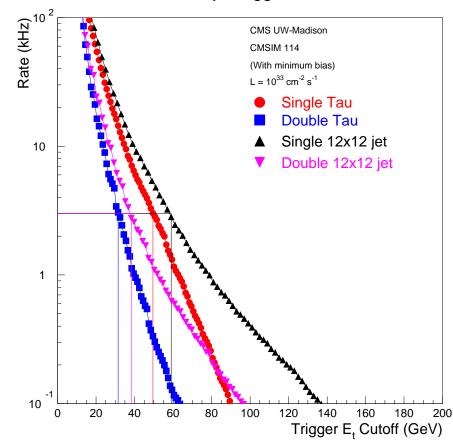
Rates higher for 95% E_⊤Threshold - jet energy resolution?

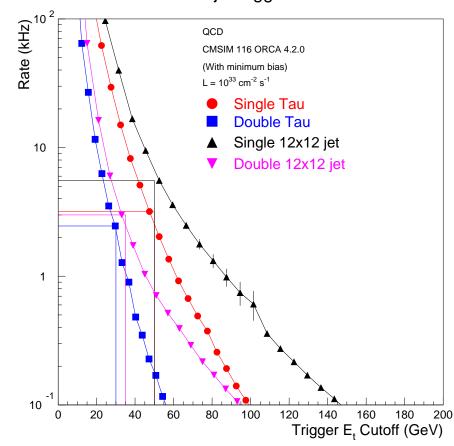

Jet Energy Resolution

Jets with 90<E $_{TMC}$ <110 GeV $|\eta_{MC}|$ <2

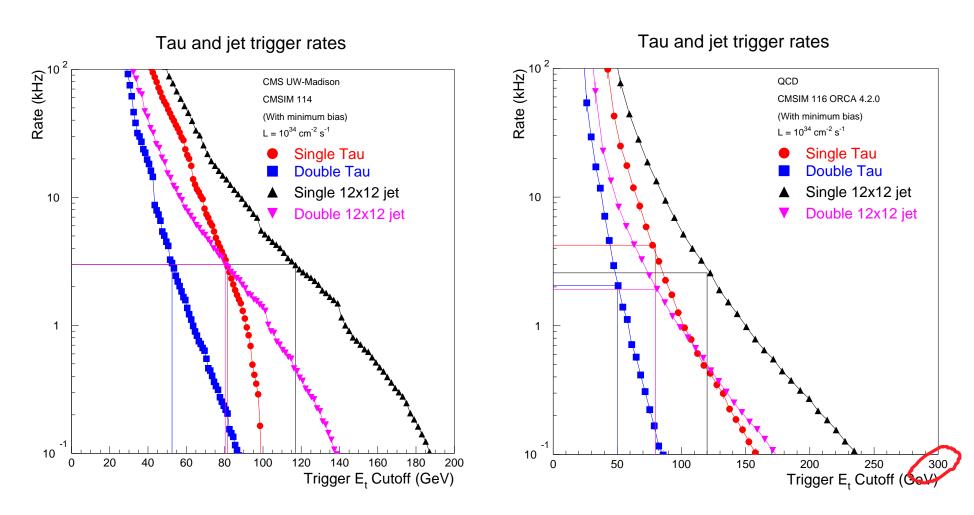
Top Plot: 10³³ cm⁻² s⁻¹


Bottom Plot: 10³⁴ cm⁻² s⁻¹


Results are simlar: RMS ~12 GeV offset ~40. GeV!



10³³ Jet/τ Rates


Tau and jet trigger rates

Tau is just a jet with the Tau Veto off. Jets are any type of jet, regardless of veto. Cutoffs are 40 for single τ , 20 for double τ . Rates similar for both analyses.

10³⁴ Jet/τ Rates

Cutoffs are 80 GeV for a single, 50 GeV for a double. Rates are similar, tails are smoother for new analysis - more statistics.

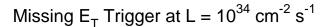
Comparison of 10³⁴ Jet Rates (1)

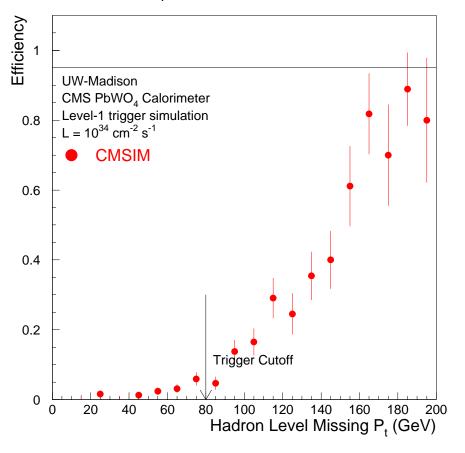
ET Cutoff (Gev)	Old Rate (kHz)	New Rate (kHz)	Newer Rate (kHz)
100	1.0	5.1	5.1
60	0.7	5.9	5.8
30	1.3	11.4	5.7
20	1.0	96.0	27.6

Old rate is from CMS114+Private Code: Rate= $\mathcal{S}\sigma$ New rate is from CMSIM116+ORCA420: Rate= $\mathcal{S}\sigma$

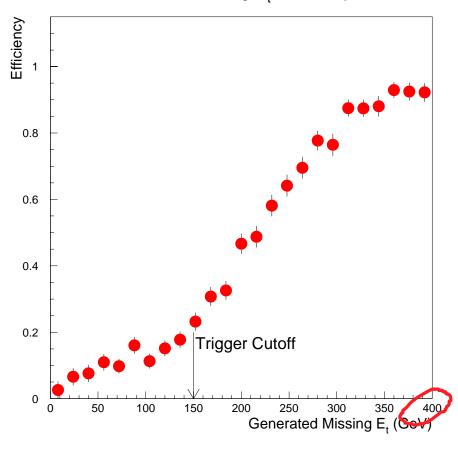
Newer rate from CMSIM116+ORCA420: Rate using weights from Branson &

Trepagnier Note


Comparison of 10³⁴ Jet Rates (2)

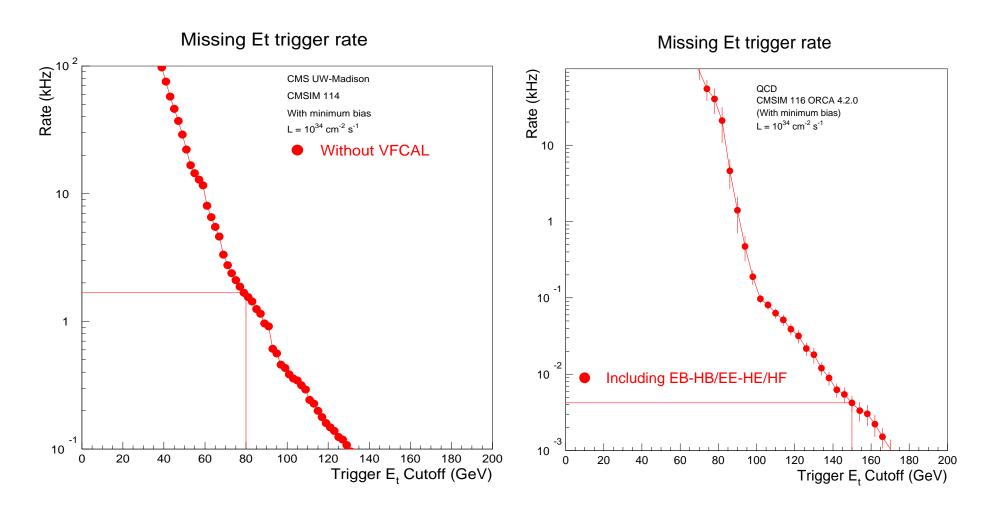

ET Cutoff (GeV)	New Rate (GeV)	Newer Rate (GeV)
120	2.6	2.5
80	1.9	1.9
50	0.6	0.6
40	0.1	0.1

New and Newer rates are as on previous slide.



Missing E_T Efficiency

mSUGRA Missing E, Efficiency



10³⁴ cm⁻² s⁻¹ with Pileup. Efficiency for mSUGRA events. Cutoffs at 80 GeV and 150 GeV.

Energy resolution affecting turn on of efficiency? Turn on at 150%→233% of E_T cutoff.

Missing E_T Rate

10³⁴ cm⁻² s⁻¹ QCD events with Pileup Steep slope in new rate is where pileup is "dying out". Rates at Cutoff values are 0.7 and 0.01 kHz.

10³³ Trigger Rates and Cutoffs

Trigger Type	E _⊤ cutoff	95% Eff.	90% Eff.	Individual
00 71	1	Thr. (GeV)	Thr. (GeV)	Rate (kHz)
Electron	14	24*	20*	9.8
Dielectron	8	15*	12*	0.2
Trielectron	5			0.003
Tau	40			3.2
Double Tau	20			2.5
Jet	70	150	130	2.5
Dijet	45	120	105	1.0
Trijet	30	85	75	0.1
Quadjet	20	80	65	0.01
Jet + Electron	40 & 10			2.2
Tau + Electron	30 & 10			0.2
Missing E _⊤	100		150	0.01
Electron + ME _T	10 & 50			0.1
Jet + ME _⊤	30 & 50			0.1
Sum E _T	500			0.02
Electrons are no			Total	~15
Many cutoffs are higher. (*old values)				

10³⁴ Trigger Rates and Cutoffs

Trigger Type	E ₊ cutoff	95% Eff.	90% Eff.	Individual
		Thr. (GeV)		
Electron	27	35*	33*	7.3
Dielectron	14	22*	20*	0.1
Trielectron	10			negligible
Tau	80			4.2
Double Tau	50			2.0
Jet	120	230	210	2.6
Dijet	80	170	165	1.9
Trijet	50	125	115	0.6
Quadjet	40	110	90	0.1
Jet + Electron	60 & 14			1.9
Tau + Electron	50 & 14			2.1
Missing E _⊤	150		350	0.004
Electron + ME _T	14 & 80			0.1
Jet + ME _T	50 & 80			0.1
Sum E _T	1000			0.02
Electrons are is	olated.		Total	~15
Many Cutoffs Higher. (*old Values)				

Efficiencies for Physics Processes

Channel	10 ³³	10 ³⁴
$H(200) \rightarrow \tau \tau \rightarrow jj$	0.98	0.57
$H(500) \rightarrow \tau \tau \rightarrow jj$	0.99	0.92
SUSY H(500) $\rightarrow \tau \tau \rightarrow jj$	0.99	0.94
H(170)→eeee	0.99	0.99
H(250)→eeee	0.99	0.99
$H(110) \rightarrow \gamma \gamma$	0.97	0.93
$H(135) \rightarrow \tau \tau \rightarrow ej$	0.99	0.94
H(200) → ττ → ej	0.99	0.94

Jets are included in cut sets for Taus

• $|\eta|$ < 2.4 due to tracker limits

Electrons are Isolated - high luminosity Isolation not considered - low luminosity

High Luminosity τ Efficiency

H(200)→ττ→jj and H(500)→ττ→jj combined Tau is a jet with tau veto off

• $|\eta| < 2.4$

 $H(200) \rightarrow \tau \tau \rightarrow jj$ and $H(500) \rightarrow \tau \tau \rightarrow jj$ ∃fficiency 8.0 0.6 $E_{\tau 1} > 80 \text{ or } E_{\tau 2} > 50$ 0.4 or E_{i1}>120 or E_{i2}>80 $E_{\tau 1} > 80 \text{ or } E_{\tau 2} > 50$ 0.2 0 50 100 150 200 250 300

MC τ -jet E_{τ}

Summary

Jet rates higher than previous

Resolution not as good as before

Tuning of E_⊤ cutoffs Still needed:

- Efficiencies:
 - t → eX (Submitted for CMSIM Prod.)
 - B → eX (Needs data card)
 - More different physics processes
- $|\eta| > 3$

η dependent tower threshold studies